NAVAL POSTGRADUATE SCHOOL Monterey, California

EC 3210 MIDTERM EXAM II 11/97 Prof. Powers

- This exam is open book and notes.
- There are three problems; each is equally weighted.
- Partial credit will be given; be sure to do some work on each problem.
- \bullet Be sure to include units in your answers.
- Please circle or underline your answers.
- $\bullet\,$ Do NOT do any work on this sheet.
- \bullet Show ALL work.
- Enter your name in the space provided.

1	
2	
3	
Total	

Name:			
Name.			

- 1. A carbon monoxide laser (i.e., a CO laser) operates at $\lambda = 5.4~\mu m$ at 77K. Its lineshape is Doppler-broadened. Calculate the value of the lineshape factor, $g(\nu)$, at the frequency $\nu = \nu_0 + (\Delta \nu/2)$.
- 2. An optical resonator consists of the two curved mirrors shown in the figure. The left mirror has a radius-of-curvature magnitude of 2 meters. The right mirror has a radius-of-curvature magnitude of A meters. The separation of the mirrors is 1 meter. For what values of radius-of-curvature magnitude, A, will the resonator be stable?

Figure 1: Geometry of the optical resonator of Problem 2.

3. Consider a laser with the properties given in the following table. Calculate the value of the internal loss coefficient, $\alpha_{\rm int}$, for the lasing medium in units of m⁻¹ at $\nu = \nu_0$.

Parameter	Value	
Left mirror power reflectivity	100%	
Right mirror power reflectivity	98%	
Mirror separation	15 cm	
Length of lasing medium	15 cm	
Diameter of lasing medium	$6~\mathrm{mm}$	
Refractive index of lasing medium	1.40	
Lasing wavelength	$1.06~\mu\mathrm{m}$	
Lineshape	Gaussian	
Linewidth	1 GHz	
Threshold population inversion	$6.9 \times 10^{11} \text{ atoms}$	
B_{ij}	$1 \times 10^{18} \text{ s}^{-2} \cdot \text{j}^{-1} \cdot \text{m}^3$	